EPA Workshop Topics: Weights

- What do people reading reports based on survey designs need to know about weights?
- How are weights used when survey data is used to produce results for monitoring reports, journal articles or special studies?
- How are weights calculated and what influences how they are calculated?
- Is the weight calculation process the same for NRSA, NLA, NCCA and NWCA?

Hypothetical News Release

A study by the US Environmental Protection Agency found that 60% of the lakes are in good biological condition. These results are based on a robust multi-metric index (MMI) that combines several measures relevant to the condition of aquatic benthic macroinvertebrates (e.g., aquatic insects and other creatures such as crayfish). The benthic macroinvertebrates are the most common biological indicator of water quality used by states. In collaboration with states, 100 lakes were sampled in each of three large geographic regions: western; plains & lowlands; and eastern highlands.

€ FPA

SEPA

Are Study Results Correct? Maybe

- What we know
 - Sampled 300 lakes with 100 lakes in each of the three regions
 - 180 lakes were in good condition
- What we need to know
 - # lakes by region: 1000 lakes in West; 12,000 lakes in Plains and Lowlands; 2000 lakes in Eastern Highlands
 - # sample lakes in good condition by region

• Results Case A: 60 of 100 sample lakes in good condition in each region

 $\frac{180}{300} = \frac{1000*60/100 + 12000*60/100 + 2000*60/100}{15000} = \frac{\frac{1000}{100}*60 + \frac{12000}{100}*60 + \frac{2000}{100}*60}{15000} = 0.60$ Results Case B: 80 West, 40 Plains, 60 Eastern lakes in good condition

- Unweighted estimate 60% in good condition: 180/300 = 0.60 WRONG
- Weighted Estimate: 45% in good condition

$$\frac{1000*80/100 + 12000*40/100 + 2000*60/100}{15000} = \frac{\frac{1000}{100}*80 + \frac{12000}{100}*40 + \frac{2000}{100}*60}{15000} = 0.45$$

- Weights: West 1000/100=10; Plains 12000/100=120; Highlands 2000/100=20 so that each lake in sample represents 10, 120 or 20 lakes depending on region
- Weighted estimate calculated as (10*80 + 120*40 + 20*60)/15000 = .45

SEPA

Weights & Inference

Use of weights in survey analyses: A scientifically defensible way to generalize from the sites sampled to the entire aquatic resource

When & How to use Weights

- Extent of aquatic resource estimation
 - National assessments
 - State assessments

SEPA

- Condition of aquatic resource estimation
 - National assessments
 - State assessments
- Change between two time periods estimation
- Use in other statistical analyses

♦ EPA

NWCA 2011 Extent Estimates

- Purpose: Illustrate use of weights and site evaluation information from the NWCA 2011 survey to understand
 - relationship between sample frame and target population (TNT extent estimates)
 - relationship between target population and sampled population (Target extent estimates)
 - reasons why the sample frame includes elements that are nontarget (NonTarget extent estimates)
- All data are in single csv file: NWCAdata_forPopEst_RelRisk.csv

SEPA

What Information is Required?

- All site evaluation information for all sites evaluated
- Sites required
 - Include or exclude site
- Design information for each site
 - Location: projected coordinates (e.g. X_Albers,Y_Albers)
 - Stratum
 - Weight
- Subpopulations for which estimate is required
 - Subpopulation type #I
 - Subpopulation type #2
 - etc
- Data
 - Indicator #I
 - Indicator #2
 - etc

SEPA

R spsurvey code: Extent

Sites to use in the analysis

```
sites_TNT <- data.frame(siteID=NWCAII$SITE_ID, Use=rep(TRUE, nr))
```

Subpopulations requested

```
subpop <- data.frame(siteID=NWCAII$SITE_ID,</pre>
          National=rep("National", nr),
          SandT Class=NWCA11$CLASS FIELD FWSST,
          NWCA_Wetland_Group=NWCA11$NWCA_WET_GRP,
          NWCA_Ecoregion=NWCA11$NWCA_ECO4,
          NWCA Reporting Units=NWCAII$ECO X WETGRP)
# Design information
dsgn <- data.frame(siteID=NWCA11$SITE_ID,
          wgt=NWCA11$WGT_11,
          xcoord=NWCA11$XCOORD,
          ycoord=NWCAII$YCOORD)
# site evaluation data
data.cat_TNT <- data.frame(siteID=NWCAII$SITE_ID,</pre>
                       Target NonTarget=NWCA11$TNT)
# calculate estimates
```

TNT_Extent_Estimates <- cat.analysis(sites_TNT, subpop, dsgn, data.cat_TNT)

Target-NonTarget Estimates

Туре	Subpopulation	Indicator	Category	NResp	Estimate.P	StdError.P	LCB95Pct.P	UCB95Pct.P	Estimate.U	StdError.U	LCB95Pct.U	UCB95Pct.U
National	National	Target_NonTarget	Target	1644	82.4	1.1	. 80.3	84.5	94,913,706	3,162,376	88,715,564	101,111,848
National	National	Target_NonTarget	NonTarget	669	17.6	1.1	. 15.5	19.7	20,268,466	1,219,212	17,878,855	22,658,078
National	National	Target_NonTarget	Total	2313	100.0	0.0	100.0	100.0	115,182,172	3,141,865	109,024,230	121,340,114
SandT_Class	E2EM	Target_NonTarget	Target	308	98.1	. 0.6	97.0	99.2	5,600,398	529,939	4,561,738	6,639,059
SandT_Class	E2EM	Target_NonTarget	NonTarget	16	1.9	0.6	0.8	3.0	106,842	30,303	47,448	166,235
SandT_Class	E2EM	Target_NonTarget	Total	324	100.0	0.0	100.0	100.0	5,707,240	530,120	4,668,225	6,746,255
SandT_Class	E2SS	Target_NonTarget	Target	159	99.8	0.1	. 99.7	100.0	989,572	153,459	688,798	1,290,346
SandT_Class	E2SS	Target_NonTarget	NonTarget	5	0.2	0.1	0.0	0.3	1,578	768	73	3,084
SandT_Class	E2SS	Target_NonTarget	Total	164	100.0	0.0	100.0	100.0	991,150	153,457	690,380	1,291,921
SandT_Class	PEM	Target_NonTarget	Target	432	88.2	1.5	85.3	91.1	21,151,755	842,345	19,500,789	22,802,722
SandT_Class	PEM	Target_NonTarget	NonTarget	87	11.8	1.5	8.9	14.7	2,834,178	364,641	2,119,495	3,548,862
SandT_Class	PEM	Target_NonTarget	Total	519	100.0	0.0	100.0	100.0	23,985,934	842,006	22,335,632	25,636,236
SandT_Class	PF	Target_NonTarget	Target	87	19.5	4.6	10.6	28.4	2,000,354	527,022	967,410	3,033,299
SandT_Class	PF	Target_NonTarget	NonTarget	225	80.5	4.6	71.6	89.4	8,268,651	542,050	7,206,253	9,331,050
SandT_Class	PF	Target_NonTarget	Total	312	100.0	0.0	100.0	100.0	10,269,006	629,207	9,035,783	11,502,229
SandT_Class	PFO	Target_NonTarget	Target	325	92.0	1.2	. 89.7	94.4	46,473,841	2,241,845	42,079,906	50,867,775
SandT_Class	PFO	Target_NonTarget	NonTarget	55	8.0	1.2	5.6	10.3	4,032,538	576,466	2,902,686	5,162,390
SandT_Class	PFO	Target_NonTarget	Total	380	100.0	0.0	100.0	100.0	50,506,379	2,167,257	46,258,632	54,754,125
SandT_Class	PSS	Target_NonTarget	Target	218	91.9	1.3	89.4	94.4	16,130,361	1,238,947	13,702,069	18,558,652
SandT_Class	PSS	Target_NonTarget	NonTarget	56	8.1	. 1.3	5.6	10.6	1,419,638	201,902	1,023,917	1,815,358
SandT_Class	PSS	Target_NonTarget	Total	274	100.0	0.0	100.0	100.0	17,549,998	1,223,994	15,151,014	19,948,982
SandT_Class	PUBPAB	Target_NonTarget	Target	115	41.6	6.9	28.1	55.1	2,567,424	620,289	1,351,680	3,783,169
SandT_Class	PUBPAB	Target_NonTarget	NonTarget	225	58.4	6.9	44.9	71.9	3,605,041	449,129	2,724,763	4,485,318
SandT_Class	PUBPAB	Target_NonTarget	Total	340	100.0	0.0	100.0	100.0	6,172,465	722,440	4,756,509	7,588,421

Set EPA

Target Extent: Sampled Population

Type	Subpopulation	Indicator	Category	NResp	Estimate.P	StdFrror P	I CB95Pct.P	UCB95Pct.P	Estimate.U	StdError.U	I CB95Pct.U	UCB95Pct.U
National	National	Evaluation Status	Target AA	87	2.3	0.5	1.3	3.2	2.156.058	469.270	1.236.306	3.075.809
National	National	Evaluation Status	Target Access Denied	429	24.7	1.8	21.2	28.2	23.462.233	1.895.029	19.748.044	27.176.422
National	National	Evaluation Status	Target Inaccessible	126	6.8	1.0	4.7	8.9	6.448.142	1.005.751	4.476.906	8.419.378
National	National	Evaluation Status	Target Other	35	5 0.7	0.2	0.3	1.2	691.074	207.600	284.186	1.097.963
National	National	Evaluation Status	Target Sampled	967	65.5	2.0	61.6	69.4	62.156.199	2.692.262	56.879.463	67.432.935
National	National	Evaluation Status	Total	1644	100.0	0.0	100.0	100.0	94.913.706	2.918.088	89.194.358	100.633.054
SandT Class	E2EM	Evaluation Status	Target AA	2	0.2	0.1	0.0	0.4	9.291	7.872	0	24.719
SandT Class	E2EM	Evaluation Status	Target Access Denied	22	2 5.7	1.7	2.4	9.1	321.616	94.133	137.119	506.114
SandT_Class	F2FM	Evaluation Status	Target Inaccessible	25	5 4.9	1.0	2.8	6.9	272,786	53,577	167.777	377,794
SandT Class	E2EM	Evaluation Status	Target Other	1	0.2	0.1	0.0	0.4	8.881	8.070	0	24.698
SandT Class	E2EM	Evaluation Status	Target Sampled	258	89.1	2.1	85.0	93.1	4.987.824	528.104	3.952.758	6.022.890
SandT Class	E2EM	Evaluation Status	Total	308	100.0	0.0	100.0	100.0	5.600.398	530.019	4.561.580	6.639.217
SandT Class	E2SS	Evaluation Status	Target AA	g) 1.7	1.4	0.0	4.5	16.708	13.906	0	43.963
SandT Class	E2SS	Evaluation Status	Target Access Denied	48	3 7.6	2.9	2.0	13.3	75.669	26.260	24.200	127.139
SandT Class	E2SS	Evaluation Status	Target Inaccessible	29	40.3	7.3	26.0	54.7	398.974	35.754	328.898	469.050
SandT Class	E2SS	Evaluation Status	Target Other	4	0.0	0.0	0.0	0.1	399	209	0	809
SandT Class	E2SS	Evaluation Status	Target Sampled	69	50.3	8.6	33.5	67.1	497.821	158.300	187.559	808.084
SandT Class	E2SS	Evaluation Status	Total	159	100.0	0.0	100.0	100.0	989.572	153.455	688.806	1.290.338
SandT Class	PEM	Evaluation Status	Target AA	11	2.1	1.0	0.1	4.1	448.240	213.340	30.101	866.380
SandT Class	PEM	Evaluation Status	Target Access Denied	135	33.9	2.5	28.9	38.8	7.167.684	568.768	6.052.920	8.282.448
SandT Class	PEM	Evaluation Status	Target Inaccessible	19	9 4.9	1.0	3.0	6.8	1.034.536	201.108	640.371	1.428.701
SandT Class	PEM	Evaluation Status	Target Other	5	5 1.0	0.4	0.3	1.8	218.234	83.089	55.382	381.086
SandT Class	PEM	Evaluation Status	Target Sampled	262	2 58.1	2.8	52.6	63.6	12,283,062	838,118	10,640,380	13,925,743
- SandT Class	PEM	– Evaluation Status	Total	432	2 100.0	0.0	100.0	100.0	21,151,755	825,972	19,532,881	22,770,630

Set EPA

NonTarget: Sample Frame Issues

Туре	Subpopulation	Indicator	Category	NResp	Estimate.P	StdError.P	LCB95Pct.P	UCB95Pct.P	Estimate.U	StdError.U	LCB95Pct.U	UCB95Pct.U
National	National	Evaluation_Status	NonTarget_Active_Crop	204	48.0	3.2	41.7	54.3	9,727,984	861,224	8,040,016	11,415,952
National	National	Evaluation_Status	NonTarget_Ag_Aqua	100	6.2	1.0	4.3	8.1	1,254,370	191,242	879,543	1,629,196
National	National	Evaluation_Status	NonTarget_Inundated	95	12.6	2.1	. 8.6	16.6	2,550,110	450,698	1,666,758	3,433,461
National	National	Evaluation_Status	NonTarget_NotWetland	183	17.5	1.9	13.8	21.2	3,549,857	399,742	2,766,377	4,333,336
National	National	Evaluation_Status	NotTarget_WetlandType	87	15.7	2.5	10.8	20.6	3,186,146	504,727	2,196,899	4,175,393
National	National	Evaluation_Status	Total	669	100.0	0.0	100.0	100.0	20,268,466	948,851	18,408,753	22,128,179
SandT_Class	E2EM	Evaluation_Status	NonTarget_Ag_Aqua	1	8.7	7.9	0.0	24.1	9,261	7,859	C	24,664
SandT_Class	E2EM	Evaluation_Status	NonTarget_Inundated	3	22.7	10.8	1.5	43.8	24,245	11,114	2,463	46,027
SandT_Class	E2EM	Evaluation_Status	NonTarget_NotWetland	3	9.4	5.6	0.0	20.3	10,027	5,405	C	20,621
SandT_Class	E2EM	Evaluation_Status	NotTarget_WetlandType	9	59.3	14.0	31.8	86.7	63,309	22,630	18,954	107,663
SandT_Class	E2EM	Evaluation_Status	Total	16	100.0	0.0	100.0	100.0	106,842	16,672	74,166	139,517
SandT_Class	E2SS	Evaluation_Status	NonTarget_Inundated	2	54.7	28.4	0.0	100.0	863	527	C	1,896
SandT_Class	E2SS	Evaluation_Status	NonTarget_NotWetland	2	5.9	5.4	0.0	16.5	93	59	C	209
SandT_Class	E2SS	Evaluation_Status	NotTarget_WetlandType	1	39.5	28.8	0.0	95.9	623	554	C	1,708
SandT_Class	E2SS	Evaluation_Status	Total	5	100.0	0.0	100.0	100.0	1,578	573	455	2,702
SandT_Class	PEM	Evaluation_Status	NonTarget_Active_Crop	18	24.7	5.9	13.1	36.2	698,804	158,514	388,122	1,009,486
SandT_Class	PEM	Evaluation_Status	NonTarget_Ag_Aqua	5	9.4	4.5	0.6	18.2	266,889	123,738	24,367	509,411
SandT_Class	PEM	Evaluation_Status	NonTarget_Inundated	10	19.9	7.5	5.2	34.5	563,511	236,303	100,367	1,026,655
SandT_Class	PEM	Evaluation_Status	NonTarget_NotWetland	45	31.0	6.1	. 19.0	43.0	878,839	180,264	525,529	1,232,150
SandT_Class	PEM	Evaluation_Status	NotTarget_WetlandType	9	15.0	5.6	4.0	26.0	426,135	165,441	101,876	750,394
SandT_Class	PEM	Evaluation_Status	Total	87	100.0	0.0	100.0	100.0	2,834,178	235,721	2,372,174	3,296,183

€PA

Weight Calculation: Types

Basic design weight calculation

- Initial design
- As-implemented design
 - Prior survey sites
 - New survey sites
 - Combined Prior and New survey sites

Adjusting weights to address sample frame imperfections and inability to sample target sites

- Unknown eligibility weight adjustment
- Non-response weight adjustment

Oregon Stream Example

• Sampling frame stream length (km) by ecoregion, stream size and land ownership

*€***EPA**

Ecore	egion			Land owners	nip		
	Stream size	Non-federal	USFS	BLM	Other federal	Tribal	Total
Mou	ntain						
	Small	26413	21842	5163	353	505	54276
	Large	10983	4220	1404	81	344	17033
	Total	37396	26063	6566	435	849	71309
Lowl	and						
	Small	7472	7	1517	414	9	9420
	Large	5628	3	1444	251	60	7386
	Total	13100	10	2961	666	69	16806
Total							
	Small	33885	21849	6680	768	514	63696
	Large	16611	4223	2847	333	405	24419
	Total	50496	26073	9527	1101	919	88115

Design Weights

- 300 site equal probability design using GRTS
 - Weight is w_i = L/n = 88115/300 = 440.5735 km where L is stream length and n is sample size
- 300 site design stratified by ecoregion and stream size with 75 sites in each stratum

- Weights are
$$w_{hi} = M_h / n_h$$

€PA

		Stratum extent		Stratum	n weight
	Stream	n size		Stream	m size
Ecoregion	Small	Large	Total	Small	Large
Mountain	54,276	17,033	71,309	723.6822	227.1034
Lowland	9,420	7,386	16,806	125.5954	98.4817
Total	63,696	24,419	88,115		

Design Weights Unequal Prob

 300 site design with unequal probability by ecoregion and stream size with 75 sites in each of the four categories

– Weights are
$$u_{ki} = 1/\pi_{ki} = M_k/75$$

€PA

		Class Extent		Class Weight				
	Strea	m Size		Stream	m size			
Ecoregion	Small	Large	Total	Small	Large			
Mountain	54,276	17,033	71,309	723.6822	227.1034			
Lowland	9,420	7,386	16,806	125.5954	98.4817			
Total	63,696	24,419	88,115					
	Class	realized sample	e size	Sum of design weights				
	Stream	m Size		Stream size				
Ecoregion	Small	Large	Total	Small	Large	Total		
Ecoregion Mountain	Small 70	Large 86	Total 156	Small 50,658	Large 19,531	Total 70,189		
Ecoregion Mountain Lowland	Small 70 80	Large 86 64	Total 156 144	Small 50,658 10,048	Large 19,531 6,303	Total 70,189 16,351		

- selection process guarantees a fixed 300 sample size but it does not guarantee 75 in each category
- Weight may not sum to the extent of the sampling frame

€PA

As-Implemented Design Weights

- Designs implemented as planned DO NOT require any adjustment of design weights
 - Assumes all sites included in the "Base" design are evaluated
 - No "over sample" sites are evaluated
 - Number of sites sampled will depend on
 - Gaining landowner permission to sample
 - Gaining physical access to site
- Aquatic resource designs are rarely implemented as planned
 - Sample units are found to be ineligible
 - Eligible sample units cannot be sampled due to physical access, landowner permission not obtained, permits not approved, and other reasons
 - Study planned to sample the planned number of "Base" sites so "over sample" sites are evaluated and sampled to meet that planned number
- Example As-Implemented design
 - Plan to sample 150 sites, design is based on 150 sites with an over sample of 150
 - Evaluated 204 sites to achieve 150 sampled sites
 - Weights must be adjusted since design and initial weights were based on 150 sites

Site Evaluation Subsets

Sampled Population

S _{ER} Know Eligible & Response Target sampled N _{ER} sites	S _{ENR} Know Eligible & No Response N _{ENR} sites	S _{IN} Know Ineligible Non-target	S _{UNK} Unknown if Eligible or Ineligible N _{UNK} sites	S _{NN} Not Needed – not evaluated N _{NN} sites
Target Popu	lation: s _e Eligible u	nits	Could be in	
n _e = n _{er} +	• N_{ENR} units	Target Populatio	n	

€PA

Class-based Weight Adjustment

- Define s_{EV} as the set of sample units in s that have been evaluated for potential eligibility and sampling. The number of sample units in s_{EV} is $n_{EV} = n_{IN} + n_{ER} + n_{ENR} + n_{UNK}$
- Create k=1, ..., K classes based on information that is known for all sample units in the sampling frame. The classes are formed to reflect how sample units are chosen to be evaluated for potential use.
- Define M_k as the extent in the sampling frame in the kth class and $M = \sum_{k=1}^{K} M_k$ is the total extent of the sampling frame
- Define s_k as the set of sample units in class k where information in the sampling frame is used to assign the sample unit to class k. All units must be assigned to one and only one class.
- Define $s_{k,EV}$ as the set of sample units in class k that were evaluated for potential eligibility and sampling, $s_{k,EV} = s_k \cap s_{EV}$. Then the number of sample units in k that have been evaluated is $n_{k,EV}$ and $n_{EV} = \sum_{k=1}^{K} n_{k,EV}$
- Calculate the adjustment for sample units in class k as $a_k = \frac{M_k}{\sum_{i \in s_{k,EV}} w_{Di}}$ where w_{Di} is the design weight for the *i*th sample unit.
- Adjusted weight for sample unit *i* in $S_{k,EV}$ is $W_{Vi} = W_{Di}a_k$
- Adjusted weight w_{Vi} is zero for the sample units not needed in class k, i.e. in $s_{k,NN} = s_k \cap s_{NN}$

SEPA

Lake As-Implemented Example I

- Plan to sample 150 lakes based on an unequal probability survey design
- Unequal probability selection using a combination of ecoregion and lake area categories
- Based on past experience sample size set at 300 with expected sample size of 75 in each combination
- Evaluated n_{ev} = 213 lakes in "siteID order" to achieve 150 sampled lakes
- Weights must be adjusted since design and initial weights were based on 300 lakes
- Single adjustment class is used with M = 1831 sample units in the class
- Adjustment factor is $a_1 = \frac{M}{\sum_{i \in s_{1,EV}} w_{Di}} = \frac{1831}{1321.787} = 1.385246$
- Adjusted weight is $W_{Vi} = W_{Di} * 1.385246$
- weights are 16.1981 for Mountain lakes ≤ 10 ha, 9.4751 for Lowland lakes ≤ 10 ha,
 5.19001 for Mountain lakes >10 ha and 2.955192 for Lowland lakes >10 ha.

Lake Example: | Class Adjustment

		Class Extent		Number of	Sample Units	s Evaluated
Ecoregion	Lake	Area		Lake	e Area	
	≤ 10 ha	>10 ha	Total	≤ 10 ha	>10 ha	Total
Mountain	877	281	1158	58	51	109
Lowland	513	160	673	49	55	104
Total	1390	441	1831	107	106	213
	D	esign Weights	5	Sum	of Design We	ights
Ecoregion	Lake	Area		Lake	Area	
	≤ 10 ha	>10 ha		≤ 10 ha	>10 ha	Total
Mountain	11.6933	3.7467		982.2	264.1	1246.3
Lowland	6.8400	2.1333		441.2	172.8	614.0
				1423.4	436.9	1860.3
	Ad	justed Weigh	ts	Sum o	of Adjusted W	eights
Ecoregion	Lake	Area		Lake	Area	
	≤ 10 ha	>10 ha		≤ 10 ha	>10 ha	Total
Mountain	16.1981	5.19001		939.49	264.69	1204.19
Lowland	9.4751	2.955192		464.28	162.54	626.81
Total				1403.77	427.23	1831

€PA

SEPA

Lake As-Implemented Example 2

- Plan to sample 150 lakes based on an unequal probability survey design
- Unequal probability selection using a combination of ecoregion and lake area categories
- Based on past experience sample size set at 300 with expected sample size of 75 in each combination
- Evaluated total of $n_{FV} = 216$ lakes in "siteID order" within each combination to achieve 38/37 sampled lakes in each combination
- Weights must be adjusted since design and initial weights were based on 300 lakes
- Four adjustment classes used since lakes replaced by lake within same unequal probability classs

Adjustment factors are $a_k = \frac{M_k}{\sum_{i \in a} W_{Di}}$

Adjusted weights is $W_{Vi} = W_{Di}a_k$

Lake Example: 4 Class Adjustment

		Class Extent		Number of	Sample Unit	Evaluated
Ecoregion	Lake /	Area		Lake	Area	
	≤ 10 ha	>10 ha	Total	≤ 10 ha	>10 ha	Total
Mountain	877	281	1158	59	58	117
Lowland	513	160	673	64	51	115
Total	1390	441	1831	123	109	232
	D	esign Weights	5	Sum	of Design We	ights
Ecoregion	Lake /	Area		Lake	Area	
	≤ 10 ha	>10 ha		≤ 10 ha	>10 ha	Total
Mountain	11.6933	3.7467		982.2	264.1	1246.3
Lowland	6.8400	2.1333		441.2	172.8	614.0
				1423.4	436.9	1860.3
	Ad	justed Weight	ts	Sum o	f Adjusted W	eights
Ecoregion	Lake /	Area		Lake	Area	
	≤ 10 ha	>10 ha		≤ 10 ha	>10 ha	Total
Mountain	15.660714	5.301887		877	281	1158
Lowland	8.69.4915	3.33333		513	160	673
Total				1390	441	1831

€PA

Set EPA

Comparison I vs 4 Class Adjustment

• I Class adjustment

	Adjuste	ed Weights	Sum of Adjusted Weights				
Ecoregion	Lake Are	ea		Lake Area			
	≤ 10 ha	>10 ha	≤ 10 ha	>10 ha	Total		
Mountain	16.1981	5.19001	939.49	264.69	1204.19		
Lowland	9.4751	2.955192	464.28	162.54	626.81		
Total			1403.77	427.23	1831		

4 Class Adjustment

	Adjuste	ed Weights	Sum of Adjusted Weights				
Ecoregion	Lake Are		Lake Area				
	≤ 10 ha	>10 ha	≤ 10 ha	>10 ha	Total		
Mountain	15.660714	5.301887	877	281	1158		
Lowland	8.69.4915	3.33333	513	160	673		
Total			1390	441	1831		

Why the difference?

- Weight adjustment classes must match the classes used when selecting lakes to replace lakes that cannot be sampled.
 - Example I: replaced ignoring ecoregion and lake area category
 - Example 2: replaced by ecoregion and lake area category
- The adjusted weights differ because different classes are used.

€PA

- The weight adjustment also depends on a random process since whether a lake must be replaced depends on it being selected for evaluation and on whether it can be sampled.
- Consequently, the adjusted weights are not fixed but are random in the sense that they are influenced by random events.
 - To minimize the impact that the random events have on the adjusted weights, the classes should be selected so that the number of sample units evaluated is at least greater than 10 and preferably much larger.
 - When 10 sample units are evaluated, the adjusted weights will change by less than 10 percent if one more or one less sample unit is evaluated.

⇔EPA

Weight Adjustment Assumptions

- MCAR: missing completely at random
 - MCAR means that the sample unit's unknown eligibility or reason for not responding is independent of any information known about the sample unit or its response.
 - When sample units are MCAR, the eligible sampleable units are representative of the selected sample units.
- MAR: missing at random
 - MAR means that the sample unit's ineligibility or nonresponse does not depend on the response but depends only on information that is known about the sample unit. In this case, it is possible to model the dependence.
 - the information must be known for eligible sample units that are sampleable and that are not sampleable
- NINR: non-ignorable nonresponse
 - NINR means that the probability of a sample unit responding depends on one or more of the response variables and that this dependence cannot be removed based on information that is known for both sampleable and nonsampleable sample units.

Workshop Topics

- Weights: What are they? Why are they important? How do I use them? How do I calculate them?
- Change and Trends: What are they?
 How do they impact survey design? How are they calculated?
- Designing a monitoring program:
 What is STRIDe and how can it help?

EPA

Change Design & Analysis

• What are the definitions of trend and change?

EPA

- How does the choice of trend and change options influence the survey design?
- What options are available for change and trend estimation?

NARS Approach: National Consistency

- Four aquatic resources surveyed
 - Lakes and reservoirs
 - Rivers and streams
 - Coastal waters and Great Lakes
 - Wetlands
- Statistical survey design used as basis for estimates of the condition of an aquatic resource at national and regional scales
- Results are representative of the entire aquatic resource
- Long-term tracking of national and regional trends

NARS Data Quality Objectives

National estimates

Estimate the proportion of aquatic resource (± 5%) in the conterminous U.S. that fall below the designated threshold for good conditions for selected measures with 95% confidence.

NARS Aggregated Ecoregions

Estimate the proportion of aquatic resource $(\pm 15\%)$ in a specific ecoregion that fall below the designated threshold for good conditions for selected measures with 95% confidence.

NARS Survey Designs

- Spatial survey design applied once every five (5) years for each aquatic resource
- Each survey period has a sample size of 1,000 sites for the aquatic resource except 2,000 sites for rivers and streams
- Temporal survey design incorporates sampling with partial replacement over four (4) survey periods for an aquatic resource
- 10% of sites within a survey period revisited to obtain information on local measurement uncertainty and to provide quality assurance information

NARS Five Year Cycle

National Lakes Assessment

 \rightarrow 2007 Lakes

→2008-9 Rivers & Streams

→2010 Coastal Waters

→2011 Wetlands

→2012 Lakes

→2013-14 Rivers & Streams

→2015 Coastal Waters

→2016 Wetlands

 \rightarrow 2017 Lakes

→2018-19 Rivers & Streams

→2020 Coastal Waters

 \rightarrow 2021 Wetlands

 \rightarrow 2022 Lakes

→2023-24 Rivers & Streams

→2025 Coastal Waters

→2026 Wetlands

NATIONAL WETLAND

2011

CONDITION ASSESSMENT

NLA Temporal Design: Number of Lakes by Panel

Panel	2007	2012	2017	2022	2027	2032	2037
NLA07_TS1	500						
NLA07_TS2	250	250					
NLA07_TS4	250	250	250	250			
NLA12_TS1		250					
NLA12_TS4		250	250	250	250		
NLA17_TS1			250				
NLA17_TS4			250	250	250	250	
NLA22_TS4				250	250	250	250
NLA27_TS4					250	250	250
NLA32_TS4						250	250
Total	1000	1000	1000	1000	1000	1000	••••

NRSA Temporal Design Number of Sites by Panel

Panel	2008-9	2013-14	2018-19	2023-24	2028-29	2033-34	2038-9
NRSA08_TS1	1000						
NRSA08_TS2	500	500					
NRSA08_TS4	500	500	500	500			
NRSA13_TS1		500					
NRSA13_TS4		500	500	500	500		
NRSA18_TS1			500				
NRSA18_TS4			500	500	500	500	
NRSA23_TS4				500	500	500	500
NRSA28_TS4					500	500	500
NRSA33_TS4						500	500
Total	2000	2000	2000	2000	2000	2000	

Population Trend & Change

- Trend trajectory: interest is in estimating the entire time series for all temporal units within the Temporal Period for population estimates of an indicator
- Trend pattern summary of trend trajectory

EPA

- Linear change per year estimated from a regression model
- Monotonic change per year estimated using Sen's median
- Change between two Temporal Units in estimates of population status for an indicator
 - Net Change: Overall change in status between two temporal units.
 Not information about change in indicator status for individual spatial units.
 - Gross Change: Change in indicator status for individual spatial units

Population Trends: Types

- Time trend in population status
 - Trend trajectory: entire time series
 - Summary of trend pattern
 - Linear change/yr from linear model
 - Monotonic change/yr (e.g. Sen's estimate)
- Change in population status between two time periods
 - Net change: Change in population status (e.g. %G period 2 minus %G in period 1)
 - Gross change: Two-way population status (e.g. G/F/P) table between time periods 1 and 2

Trend Trajectory: Site versus Population

Mauna Loa CO₂

Status Estimates for Low ANC Lakes Trend Estimated by Kendall's Tau and Linear Regression Adirondack and New England Subregions

Population net change per year estimate

Sen's slope -0.27%/yr Regr slope -0.53%/yr

Net Change Estimate between NRSA 2008-9 and WSA 2004

Change in Population CDFs between time periods: NRSA & NLA

Change Between Two Time Period Estimation

- R revisited sites in common for two time periods
- Q period 1 unique sites
- U period 2 unique sites
- N₁ & N₂ estimated stream length periods 1 & 2
- S_{1R} & S_{2R} estimated stream length from revisit sites for periods 1 & 2
- Estimate $\Delta = P_2 P_1$ where P_i is estimated proportion
- $Var(\Delta) = Var(P_2) + Var(P_1) 2(S_{1R}*S_{2R})/(N_1*N_2) * Cov(P_{1R}, P_{2R})$
- In most cases Cov() is positive so reduces variance estimate

SEPA

STRIDe: What is it?

- STRIDe: Spatial, Temporal, Response, and Inference Design approach to designing an aquatic resource monitoring program.
- How do monitoring questions influence STRIDe?
- Why should I begin the design of a monitoring program by defining what reports will be produced by the program?
- Is it useful to agree on a set of terms to clarify the process?

Important terms to know

• Reporting domains

SEPA

- Specific collections of spatial-temporal units in the spatial and temporal domain for which estimates are required
- Spatial domain & spatial unit
 - Geographic region over which the study will be conducted
 - Domain usually consists of a collection of spatial units
- Temporal domain & temporal unit
 - Entire length of time over which the study will be conducted
 - Domain usually consists of a sequence of temporal units
- Summary estimates, indicators, metrics & measurements

SEPA

Estimates, Indicators, Measurements

- A measurement is a value resulting from a data collection event which is taken on or within a spatial-temporal unit using protocols described in what is called the response design
- An indicator is the spatial-temporal unit value resulting from the reduction or processing of measurements as described in the response design
- An estimate is the reporting domain value resulting from the processing of indicators across spatial-temporal units as described by what is called the inference design

STRIDe

- Spatial design: how we select what spatial units to monitor within the spatial domain
- Temporal design: how we select what temporal units to monitor within the temporal domain
- Response design: what measurements we make, how we take them & how we calculate indicators on spatial-temporal units based on the measurements
- Inference Design: how we summarize indicators across spatialtemporal units within a temporal domain to obtain estimated value for a reporting domain

Sepa

Building Blocks Spatial Design

- Spatial domain and its spatial units define the target population
- Target population
 - Requires a clear, precise written definition
 - Must be understandable to users
 - Field crews must be able to determine if a particular site is included
 - More difficult to define than most expect.
 - Includes definition of what the spatial units (elements) are that make up the spatial domain
 - Definition is written and usually not given in terms of a GIS layer
- Spatial survey design specifies how spatial units are selected to meet monitoring program objectives

€PA

- Goal is to obtain a "representative sample" of the target population that can be used to make inferences from the metric values on the sampled spatial units to indicator values for a reporting domain
- Problem:At least 9 definitions for representative sample
 - General acclaim for data
 - Absence of selective forces
 - Miniature of the population
 - Typical or ideal case(s)
 - Coverage of the population
 - Vague term, to be made precise
 - Representative sampling as a specific sampling method
 - Representative sampling as permitting good estimation
 - Representative sampling as good enough for a particular purpose

Representative Spatial Sample

• Goal is for the spatial survey design to result in a sample that is a "miniature" of the indicator value in the population

SEPA

- Example: IBI indicator cumulative distributions for
 - Entire target population of lakes
 - Estimated cumulative distribution based on a spatial sample of size 25
- A representative sampling process (spatial survey design) enables margins of error to accompany the estimates
- Generalized Random Tessellation Stratified (GRTS) survey design options available in R package spsurvey produce spatial survey designs appropriate for aquatic resources

